Skip to main content

Scientists Discover Exotic New Mineral Forged in The Furnace of a Russian Volcano

Volcanoes rank among the most destructive and awe-inspiring phenomena on the planet. But these fiery fissures do much more than just destroy. They also create.

In a new study, researchers in Russia report the discovery of one such creation – an unusual mineral never before documented by scientists: an alluring, vibrantly blue-and-green crystallised substance the team have called petrovite.

The mineral was found in the volcanic landscape of Russia's far east, atop the Tolbachik volcano in the Kamchatka Peninsula.

Blue cryptocrystalline crusts of petrovite. (Filatov et al., Mineralogical Magazine, 2020)

Tolbachik's eruptive history traces back thousands of years, but in recent times, two notable events stand out: the 'Great Tolbachik Fissure Eruption' of 1975–1976, and a second, lesser follow-up that took place between 2012–2013.

The force of eruptions during the first event tore numerous cinder cones in the volcanic complex, opening up rocky terrain that's since been discovered to be a rich vein of fumarole deposits and unknown minerals never seen anywhere else.

In total, the Tolbachik volcano lays claim to 130 type locality minerals that were first identified here, the latest of which is petrovite, a sulfate mineral that takes shape as blue globular aggregates of tabular crystals, many holding gaseous inclusions.

The specimen studied here was discovered in 2000, near the second cinder cone associated with the 1975 eruption, and was stored for later analysis. It may have been a long time coming, but that analysis now reveals that this vibrantly blue mineral exhibits peculiar molecular hallmarks only rarely seen before now.

The copper atom in the crystal structure of petrovite has an unusual and very rare coordination of seven oxygen atoms," explains lead researcher and crystallographer Stanislav Filatov from St Petersburg University.

"Such coordination is characteristic of only a couple of compounds, as well as of saranchinaite."

Individual grain of petrovite. (Filatov et al., Mineralogical Magazine, 2020)

Saranchinaite, identified a couple of years ago by another St Petersburg team, was also uncovered at Tolbachik – and, like petrovite, is strikingly coloured in its own right

At the chemical level, petrovite represents a new type of crystal structure, although one that bears similarities to saranchinaite, from which it may be produced, hypothetically speaking.

Notably, petrovite's molecular framework – consisting of oxygen atoms, sodium sulphur and copper – is effectively porous in nature, demonstrating interconnected pathways that could enable sodium ions to migrate through the structure.

Due to that behaviour – and if we can replicate the framework in the lab – the team thinks this could lead to important applications in material science, potentially enabling new ways of developing cathodes for use in batteries and electrical devices.

Crystal structure showing sodium migration pathways. (Filatov et al., Mineralogical Magazine, 2020)

"At present, the biggest problem for this use is the small amount of a transition metal – copper – in the crystal structure of the mineral," Filatov says

"It might be solved by synthesising a compound with the same structure as petrovite in the laboratory."

The findings are reported in Mineralogical Magazine.

Note: The Post is edited and reprinted from the materials provided by The Science Alert.


Comments

Popular posts from this blog

HOW TO MAKE A GEOLOGICAL REPORT?

What is a GEOLOGICAL REPORT? Geological reports are concise, informative and well documented reports used to present, analyse and summarise field data for both industry and research purposes. They should be accompanied by geological maps, figures, stratigraphic columns, tables, graphs etc. PREPARATION First plan the layout, section by section; then draft each section using all your notes, maps, laboratory results and references gathered from other sources. Then list the illustrations needed to support the text. Finally, lay sections out in your choosen order, before gathering them together to edit  them. Does not spare the paper, allow plenty of room between the lines and at the margins for corrections, alterations and additions. REVISION AND EDITING First, a rough draft gets the essential facts and information in order. The next stage is to revise it and re-edit. The order of some paragraphs may need changing, spelling mistakes corrected, grammar improved. Indicate where illustratio

The 10 Most Toxic Minerals

1. Cinnabar- Cinnabar is the main ore of mercury, the most toxic mineral on Earth. The name itself means dragons bloods. Form near volcanoes and sulphur deposits, the bright red colour signals danger.                    Copyright: Courtesy of Ted Boente; John H. Gerard/Encyclopedia Brittanica, Inc.  2. Orpiment- Originate from Latin auri , " golden "; pigmentum , " paint ". Composed of Arsenic Sulfide, the lethal and chemically reactive orpiment crystals are found growing below the surface in mineral formations, often near hydrothermal veins. It may crumble into dangerous powder when exposed to light. Holding crystals in your hands may release carcinogenic , neurotoxic powder.   Copyright:   U.S. Geological Survey 3. Stibnite- Antimony Sulphide, the principle ore of antimony. It is used in manufacturing of  matches and fireworks. Mines near Oksaku, Japan produce the best stibnite crystals in the world.                                                               

Silicates

Introduction:  Silicates are a fascinating and diverse group of minerals that form the foundation of the Earth's crust. They are composed of silicon and oxygen, the two most abundant elements in the Earth's crust. Silicates exhibit a wide range of chemical compositions and crystal structures, making them crucial components of rocks, soils, and various industrial applications. The fundamental unit in the building of silicate minerals is the  SiO 4 -4  tetrahedron in which the silicon atom is situated at the centre of tetrahedron where corners are occupied by four oxygen atoms. The radius ratio of Si +4  to O -2  requires that Si +4   be coordinated by 4 O -2  ions in tetrahedral coordination. In order to neutralize the +4 charge on the Si cation, one negative charge from each of the Oxygen will reach the Si cation. Thus each Oxygen will be left with a net charge of -1, resulting in a SiO 4 -4  tetrahedral group that can be bond to other cations. It is this SiO 4 - tetrahedron th